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The glycine-rich tropoelastin tetrapeptide Ac-Gly-Leu-Gly-Gly-NMe has been modeled in aqueous solution by
means of molecular dynamics simulations and the conformational motions have been characterized using nonlinear
dynamics theory. Large amplitude fluctuations of the peptide backbone and H-bond patterns are detected. The
end-to-end vector Ree undergoes anomalous diffusion with antipersistent fractional Brownian motion according
to chaotic motions of molecules on fractal media. The vibrational picture of the intramolecular vectors shows a
spatiotemporal self-similar disorder along the peptide chain on large scale observation demonstrating a high entropy
state. The conformational chaos of the peptide is a consequence of the nonlinear effects of the attractive interactions
between residues developed in aqueous solution due to water being a poor solvent. The viscous drag is high-lighted
and is thought to be due to the percolation network of disordered H-bonded water molecules. The method of the
reconstruction of the phase-space using the embedding theorem is presented and the invariant properties of the
peptide are calculated. The existence of a low dimensional chaotic attractor according to dissipative systems has
been demonstrated. The dynamical high entropy state of the peptide in solution is in agreement with the proposed
mechanism of the transition-to-chaos for the elastin elasticity.

Introduction
What exactly is the dynamics of peptides in dilute aqueous solu-
tion? Of course, a simple answer is not possible: it will depend
upon the particular primary structure and on the experimental
conditions. Nevertheless, universal scale behaviors due to the
nonlinear forces are to be expected.1

We are interested in aqueous solutions of essentially flexible
peptides and we expect to observe complex dynamics. In this
paper we describe a study of the tetrapeptide Ac-Gly-Leu-Gly-
Gly-NMe, a typical sequence recurring in the tropoelastin
chain. The glycine-rich sequences characterize the elastic per-
formance of elastin,2 owing to the high concentration of this
residue (up to 33%). In fact, due to the absence of a side chain
group, the glycyl residue is extremely flexible either from a static
or from a dynamic point of view in that the conformational
minima of the backbone are equally probable and the inter-
conversion frequency is higher than those corresponding to the
global molecular motions of the chain.1

In a series of previous theoretical papers 3–7 some of us have
determined the relative stability of conformers and the dynam-
ical behavior of that sequence, either as an isolated molecule or
in aqueous solution, from the available experimental NMR and
CD data.8

A number of accessible conformational states and a large
chain-mobility characterize the peptide behavior. Nevertheless,
a typical dynamical pattern of hydrogen bonds, characterized
by the type II β-turn [Gly1]C��O � � � HN[Gly4], is observed.

An amazing nonlinear dynamic behavior with conform-
ational solitons has been evidenced in the molecule in vacuo and
a chaotic one for the molecule in aqueous solution. In the
Villani–D’Alessio–Tamburro model, this has been related to
the entropic mechanism of the elastin elasticity as a chaos–
soliton transition from the relaxed to the stretched form in an
aqueous medium.5,6

In this work, by means of molecular dynamics (MD) simu-
lations in aqueous solution and original analysis of data, we

have attempted to further define the conformational picture of
the dissolved peptide in terms of diffusive behavior focusing on
intramolecular structural parameters.

The advent of nonlinear time series analysis and the math-
ematical theorems associated with chaotic dynamics in the late
eighties now make it possible, not only to qualify, but also to
quantify the behavior of complex systems. The techniques,
which allow complex dynamics to be represented in multi-
dimensional phase space as a geometrical object, have had
success in predicting chaotic behavior.9

The dynamic behavior of the system has been carefully
defined in terms of mean square displacement, Hurst
exponent, fractal and attractor dimensions and Lyapunov
exponents. The dynamic Fourier surface method introduced in
ref. 5 has been used successfully. We have tried to develop fur-
ther this nonlinear time series analysis using delay coordinate
embedding by applying recently developed numerical algo-
rithms. In this way, we have investigated the complexity and
instability of nonlinear conformational dynamics, showing the
spatiotemporal chaos of the molecule which could be the basis
of the role played by similar sequences in elastomeric proteins
such as elastin.

Model and methods
AMBER 4.1 software 10 was used on a DEC Alpha Station 2100
under the UNIX 5.0 operating system. The data analysis
was performed using homemade FORTRAN programs and
the final plots using GNUPLOT 11 under WINDOWS NT on
a Pentium II PC.

The molecular potential energy has been computed for the
peptide using the Wiener et al. united-atoms force field model 12

(where carbon atoms with implicit inclusion of bonded hydro-
gen are used) and for water molecules the Jorgensen et al.
TIP3P model 13 (which include only Lennard–Jones and electro-
static terms). This choice was suggested by the requirement of
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optimizing the computer efforts and was encouraged both by a
large amount of literature on aqueous solution simulations and
on a heuristic basis by our previous MD simulated annealing
of the same peptide in aqueous solution which successfully
interpreted the most important experimental results.7

The MD simulation at constant temperature and pressure by
means of the method of van Gunsteren and co-workers 14 was
accomplished by coupling the system to external heat- and
pressure-baths at reference values To = 300 K and Po = 1 atm by
the time constants τT = τP = 0.2 ps. These dynamics are not
Hamiltonian (i.e. not at constant total energy) and the molecu-
lar model can be reduced to an ensemble of dissipative non-
linear Rayleigh oscillators.5 Periodic boundary conditions
were applied and the cutoff distance criterion of 9 Å for the
nonbonded interactions were used.

The equations of motion were integrated in Cartesian
coordinates via the Verlet leap-frog algorithm 15 with holonomic
constraints of the bond distances at equilibrium values, using
the SHAKE routine.16 This results in rigid TIP3P water
molecules being characterised by three bonds rather than two
bonds and an angle.

A solution box of volume 32.2337 × 30.4357 × 27.3159 Å3

and density 0.9733 g cm�3 with one tetrapeptide Ac-Gly-Leu-
Gly-Gly-NMe molecule solvated by 852 waters is the start-
ing point of our simulation. This is the state obtained by MD
simulated annealing reported in ref. 7.

In our MD simulations the integration time step δt was 2 fs,
and energies and coordinates were stored every ∆t = 0.08 ps.
The time period of 1 ns was simulated, producing time series of
12500 points, and required about 85 CPU hours. The analysis
is focused on the tetrapeptide dynamics and the trajectory of
the end-to-end vector Ree(t), a fundamental parameter charac-
terizing macromolecule behavior,1 has been considered. The
vector Ree is defined by means of the end carbon atoms of
acetyl and N-methyl-amide groups.

Mean square displacement and Hurst exponent

The mean square displacement 〈R2(τ)〉 is defined as the time-
dependent difference correlation function [eqn. (1)], at corre-

〈R2(τ)〉 = 〈(R(t0) � R(t0 � τ))2〉t0 (1)

lation times which are delayed by an amount τ. The time average
denotes the averaging over different time origins t0. In this way
intramolecular diffusive processes were monitored.

The scaling law of the mean square displacement of the
diffusing variable as a function of time is given by eqn. (2)

〈R2(τ)〉 ~ τ2H (2)

according to the diffusion law, where H is the critical exponent
of Hurst.18 We obtained the diffusion exponent H from the
slope of the corresponding bilogarithm scale plot [eqn. (3)].

ln 〈R2(τ)〉 ~ 2Hln τ (3)

When H = 1/2 ordinary Brownian motion occurs and Einstein–
Fick’s law is followed, while if H ≠ 1/2 fractionary Brownian
motion (fBm) takes place.19 Both cases of enhanced and reduced
diffusion rate are possible. For a random walk on a fractal
object in the presence of fixed obstacles, the antipersistent fBm
with H < 0.5 occurs. In fact, the irregularities existing at any
lengh scales are responsible for the diffusion lag.20

Fractal dimension

How long is a dynamic path? Similar to the classical Mandel-
brot 19 results, the length of a trajectory in its space as a func-
tion of the time resolution step P was computed to give the

fractal dimension D of the path, which is a measure of its
jaggedness.

The approach is in line with Perrin’s historical observations
on the Brownian motion of a fluctuating particle.21

He described a quite irregular motion observing convoluted
trajectories at every timescale: every straight segment at a
certain scale is substituted by a longer than ever polygonal
contour upon increasing the time resolution. In this way the
lengths of the trajectories Ree(t) have been measured (using
Euclidean metrics) and eqn. (4) is derived from the bilogarithm

ln (L(n)) ~ d ln (n) (4)

plot (where n = P/∆t is the resolution factor per measurement
interval). The corresponding fractal dimension D = 1 � d was
evaluated.

Dynamic Fourier spectra

This method, introduced for the first time in the study of the
Boc-Gly-Leu-Gly-Gly-NMe tetrapeptide in vacuo, is a very
powerful tool to characterize the nonlinear dynamic behavior.5

In this way, the non-stationary vibrational picture was apparent
and the characteristic excitation-sharing among few modes, a
fingerprint of non-ergodic soliton motions, was observed.

Briefly, a family of delayed and bounded time series called
traveling trajectory pockets (TTP) is generated. In particular,
TTPs of 500 ps length starting at tn = nP (n is an integer number
and P = 50 ps) from the initial point of the MD simulation,
have been considered. This family of TTP was used to calculate
the corresponding Fourier spectra. Accordingly, a family of
power spectra In(ω, tn) called dynamic Fourier spectrum (DFS)
was generated and is represented as cross-section curves.

Reconstructing phase-space

Phase-space reconstruction is the first step in nonlinear time
series analysis. Let us consider a system of d ordinary differen-
tial equations [eqn. (5)], where x(t) = [x1(t), x2(t), . . ., xd(t)] in Rd

and F = [F1, F2, . . ., Fd].

dx(t)/dt = F(x(t)) (5)

A time series is a list of numbers which are assumed to be
measurements of a quantity observable over time, which, in the
absence of noise, is related to the dynamic system by eqn. (6).

s(t) = h(x(t)) (6)

The system on which the observable is being measured is evolv-
ing with time. The phase-space reconstruction problem is that
of recreating states when the only information available is con-
tained in a time series, i.e. how to go from scalar or univariate
observations to the multivariable phase space which is required to
study the system? Typically, F and h are both unknown, so we
cannot hope to reconstruct states in their original form. How-
ever, we may be able to reconstruct a state space that is equiv-
alent to the original in the sense that differential properties are
preserved. The work by Takens 22 has shown that if the dynam-
ics is on a d-dimensional Euclidean space, an embedding of the
system can be obtained with a 2d � 1-dimensional recon-
structed state space using derivatives or delay coordinates. The
basic idea of this reconstruction is that if one has observed an
orbit projected onto a single axis s(t), then the orbit, which is
presumed to come from an autonomous set of differential
equations, may, by virtue of the projection, overlap with itself
in the variables s(t). There is no overlap of the orbit with itself
in the true set of state variables by the uniqueness theorems
about the solution of autonomous differential equations. If we
can unfold the orbit by providing independent coordinates for a
multidimensional space made out of the observations, then we
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can undo the overlaps coming from the projection and recover
orbits which are not ambiguous.

In this work delay coordinates have been used. Delay
coordinates, {s(t), s(t � T ), s(t � 2T ), . . ., s(n � (dE � 1)T} are
easy to work with and can be effective for very high dimensional
cases where it may not be practical to calculate the required
number of derivatives. Most of the research on the state space
reconstruction problem has focused the problems of choosing
the time delay T and the embedding dimension dE for delay
coordinates.

Finding the time delay

The first step in phase-space reconstructon is to choose an
optimum delay parameter T. Different prescriptions have
appeared in the literature for choosing T but they are all
empirical in nature. The most useful technique was suggested
by Fraser and Swinney.23 They propose using the first mini-
mum of the Average Mutual Information function I(T), as a
kind of nonlinear correlation function to determine when the
values of s(n) and s(n � T) are independent enough of each
other to be useful as coordinates in a time delay vector but
not so independent as to have no connection with each other
at all.

Choosing the embedding dimension

The time delay reconstruction of the system phase space pro-
vides a necessary number of coordinates to unfold the attractor
called the embedding dimension,24 dE. This is a global dimension
to unfold the dynamics which may be different from the real
dimension.

Furthermore, this dimension depends on the time series
measurement, and, hence, if we measure two different quan-
tities from some system, there is no guarantee that the dE from
time delay reconstruction will be the same for each of them.

The usual method for choosing the minimum embedding
dimension is to compute some invariant of the attractor. By
increasing the embedding dimension used for the computations,
one notes when the value of the invariant stops changing. Since
these invariants are geometric properties of the attractor, they
become independent of d for d ≥ dE, i.e. after the geometry is
unfolded.

In this work we have used the Cao method 25 which is based
on the idea of False Nearest Neighbours (FNN) developed by
Kennel et al. 26 In this case, the condition of no self-intersection
states that if the attractor is to be reconstructed successfully in
Rd, then all the neighbour points in Rd should be also neigh-
bours in R d� 1, where d is the embedding dimension. This
method also provides a way to distinguish between determin-
istic and stochastic signals by plotting two functions E1 and E2
(see Cao 25 for a precise definition). When both quantities reach
saturation we have found the embedding dimension. In case of
noise E1 will never reach saturation and E2 will always remain
1 for any dimension.

Determining the dynamic dimension

Once one has determined the global number of dimensions
required to unfold the attractor, there remains the problem of
the number of dynamic degrees of freedom dL, which are active
in determining the evolution of the system as it moves around
the attractor. To calculate this dynamic dimension we have used
the method proposed by Kennel et al.26 in which the percentage
of local false nearest neighbours is evaluated. Using the same
idea as the method of FNNs, they proposed a method to study
the local structure of the phase-space to see if locally one
requires fewer dimensions than dE to capture the evolution of
the orbits as they move on the attractor. Their approach was to
work in a dimension, d ≥ dE, large enough to assure that the
attractor has been unfolded. In this space, they studied for some

data point y(k) = {s(t), s(t � T), s(t � 2T), . . ., s(n � (d � 1)T},
what subspace of dimension dL one requires to make accurate
local neighbourhood to neighbourhood maps of the data on
the attractor. In fact, for a specified number of neighbours NB of
y(k), they provided a local rule for calculating how these points
evolve in one time step into the same NB points near y(k � 1).
When the percentage of wrong predictions becomes independ-
ent of dL and is also insensitive to the number of neigbours NB,
it is possible to say that the correct local dimension for the
active degrees of freedom has been identified.

Global Lyapunov exponents

In the case of nonlinear systems one major feature that has
emerged as a classifier are the Lyapunov exponents: they quan-
tify how orbits on the attractor move apart (or together) under
the evolution of dynamics.

Given a dynamic system in a dL-dimensional phase-space it is
possible to monitor the evolution of an infinitesimal dL-sphere
of initial conditions. This d-sphere will become a dL-ellipsoid
due to the locally deforming nature of the flow. The j-th one-
dimensional Lyapunov exponent, λj, is then defined in terms of
the length of the ellipsoidal principal axes pj (t) at time t (see
Wolf et al.27) as eqn. (7).

λj = limt →∞ 1/t log2 pj(t)/pj(0), j = 1, . . ., dL (7)

The Lyapunov exponent monitors the behavior of two
closely neighbouring points in a direction of the phase space as
a function of time. If the points expand away from each other,
the Lyapunov exponent will be positive, if they converge, the
exponent becomes negative, if the two points stay the same
distance apart, the exponent stays near zero. If base 2 is used,
the exponents are measured in bits of information per time
unit.

Results and discussion
Intramolecular trajectories

In order to clarify the motion of the peptide in solution, the
conformations of the molecular backbone as a piecewise-line
obtained by joining the bonded atoms are sketched in Fig. 1.
The snapshots are sampled every 80 ps during the whole simu-
lation and overlapped in tridimensional projection. The high
flexibility of the peptide is apparent and the plot shows that the
mobility is essentially intramolecular.

We analyze the observed conformational dynamics in terms
of motions that the end-to-end vector undergoes. In Fig. 2 the
tridimensional scatter-plot of vectorial trajectory Ree(t) is
reported. Ree(t) appears anisotropic and inhomogeneous, with
maxima of state density distributed disorderly within the
self-similar point cloud. These fractal features suggest a
chaotic intramolecular dynamics like the Brownian motions of
molecules in disordered media.

Fig. 1 Main chain conformation snapshots of the Ac-Gly-Leu-Gly-
Gly-NMe peptide during 1 ns MD simulation in aqueous solution.
A time sampling of 80 ps was used.
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The end-to-end and [Gly1]C��O � � � HN[Gly4] distances Dee

and D14, respectively, were considered. From the analysis of the
Dee(t) and D14(t) trajectories of Fig. 3a and b it is possible to

Fig. 2 Three-dimensional scatter-plot of the end-to-end trajectory
Ree(t) during the MD simulation. A time sampling of 0.08 ps was used
and the vectorial components are expressed in Å.

Fig. 3 Trajectories of (a) the end-to-end distance Dee(t) and of (b) the
[Gly1]C��O � � � HN[Gly4] interaction distance D14(t) are plotted. Å and
ps units are used. (c) Trajectories of φ2, ψ2, φ3 and ψ3 torsional angles
are plotted. Torsions are in degrees and time in ps.

obtain information about the conformational states assumed
by the peptide in aqueous solution and the transition patterns
followed from one to another. The Dee(t) and D14(t) trajectories
appear strictly correlated: the peptide is initially in an unfolded
state, then changes to a folded one through a gradual transition
characterized by very large fluctuations which involve the start-
ing and final states. The large fluctuations are in agreement with
the behavior of the systems at a phase transition 28 and confirm
that the conformational transitions belong to the critical
phenomena as described in ref. 4. Lastly, through a sudden
folded-to-unfolded transition the final observed state is reached.
Our dynamics seem to suggest symmetry breaking in the
folding–unfolding process: the first being slow while the second
was fast. This self-organized criticality 29 is in agreement with
the cooperative helix–coil transition observed and modeled for
proteins, e.g. in the denaturation of dispersed collagen in a
dilute solution 30 or in recent simulations of water–plastocyanin
systems.31

Lastly, from comparison of the torsion φ2, ψ2 and φ3, ψ3

trajectories reported in Fig. 3c, which identify the β-turn type
[Gly1]C��O � � � HN[Gly4],

32 one can observe that the type II
β-turn occurs in the time ranges of about 400 to 600 and
800 to 900 ps, according to both experimental and theoretical
observations.3–8

Scaling law and fractal dimension

The Ree(t) trajectory representative of the intramolecular
motions of the tetrapeptide in solution has been characterized
quantitatively determining the critical exponent of the time
scaling law and the corresponding fractal dimension.

Fig. 4 shows the bilogarithm scale plot of the length L(n)
of Ree(t) as a function of the resolution factor n. Then, the
asymptotic straight trend has been fitted by the least-
square regression line, whose slope d represents the critical
exponent of the scaling law, from which the corresponding
fractal dimension D = 1 � d is obtained. The computed
critical exponent, increasing the trajectory length, is d = �0.64.
We have observed that the fractal dimension D = 1.64 is larger
than that corresponding to ideal Brownian walks (D = 1.5) and
is typical of antipersistent fBm related to critical self-organized
phenomena.29 This motion has a lower correlation time than
the Brownian one, with greater entropy, and is a fingerprint of
chaotic dynamics.

These observations confirm the previous hypotheses 5,6 of
the change in the dynamic picture of solution with respect to
the in vacuo molecule characterized by soliton vibrations.

Mean squares displacement and Hurst exponent

Fig. 5 shows the bilogarithm plot of the time-dependent mean

Fig. 4 Bilogarithm plot of the measured length for the trajectory
Ree(t) as a function of the resolution time expressed as number of
points per observation interval. The trajectory length is expressed in Å.
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squares displacement 〈R2(τ)ee〉 versus the correlation time τ for
the end-to-end vector Ree. In the meaningful time range, not
affected by the finite length of the time series, the function has a
linear trend and it is possible to evaluate the Hurst exponent
H = 0.38. The observed value is lower than that corresponding
to ideal Brownian walks (H = 0.5) pointing to a reduced diffu-
sion rate and is consistent with the value of the observed fractal
dimension of R(t).

The anomalous diffusion is in agreement with the antipersist-
ent fBm of molecules in fractal media. From this point of view,
we hypothesize that the diffusion lag is due to the viscous drag
of the solution H-bond network. In other words, the water H-
bonded molecules constitute a percolation cluster of obstacles
against the conformational Brownian motion of the solute, and
similarly to the findings obtained by means of simple lattice
models, deviation from the ideal diffusion is observed.

We note that a correlation does exist between the scaling laws
of the chain size as a function of the chain length N or the time
period τ. The former is characterized by the Flory critical
exponent 1 ν [eqn. (8)], the latter by the Hurst exponent. From

Ree(N) ~ N2ν (8)

this viewpoint, the exponents are similar and can be interpreted
in the same way. Then, the observed H value is in agreement
with ν = 1

3– as expected in poor solvents where the solute–solvent
interactions are unfavored with respect to the intramolecular
ones within the solute.

In conclusion, the dynamics of the elastin-related tetra-
peptide in aqueous solution could be modeled by means of
antipersistent fBm of chains on a fractal percolation medium of
H-bonded water molecules.

DFS analysis

In Fig. 6 the DF spectrum of the end-to-end vector components
is shown. Similar spectra also characterize the other intra-
molecular vectors,1 as we have verified by taking into account a
number of ij atom pairs of the backbone. In all cases the DF
spectra testify a non-stationary vibrational motion localized in
the low-frequency range (up to about 0.1 ps�1). This behavior is
typical of fBm, as we have verified. In these cases, in addition
to the characteristic intensity damping toward the high-
frequencies, non-stationary behaviors with time intensity fluc-
tuations of excited modes are observed. This testifies to the
variable and disordered spectral composition of the trajectory
as a function of time.

Fig. 7a and b shows the DF spectra of the end-to-end and
D01 (between Cα0

 and Cα1
 atoms) distances, respectively. The

Fig. 5 Bilogarithm plot of the mean square displacement for the end-
to-end vector, 〈R2(τ)ee〉 versus the autocorrelation time τ. The square
displacement is expressed in Å2 and the time unit in 0.08 ps.

spectra shown by any other peptide intramolecular distance are
similar. In both cases time domains of 500 or 100 ps have been
considered varying the length of the TTPs. In this way, it has
been possible to characterize the space-time scale behavior of
the intramolecular dynamics. At the considered scale lengths we
observe self-similar Brownian motions, fingerprint of chaos
dynamics. The observed scale invariance testifies that the
peptide in solution exhibits time disordered motions along
the peptide chain similarly to turbulent fluids. In contrast, the
corresponding spectrum for the in vacuo peptide showed
the typical soliton mode-sharing of essentially quasiperiodic
motions. An analogous hypothesis on the vibrational state of
stretched elastin has been proposed and is supported by the
dynamics of a partially extended single DNA macromolecule 33

that can be described by linearly independent normal modes.

Attractor dimensions and Lyapunov exponents

To analyze the chaos quantitatively the Lyapunov exponents of
the modulus and of the coordinate components for the end-to-
end trajectory Ree(t) were calculated. The time series data of

Fig. 6 DF spectrum of the x-component for the end-to-end trajectory
Ree(t) is reported. Time is in ps, frequency in ps�1 and TTPs of 500 ps
have been used.

Fig. 7 DF spectra of (a) the end-to-end distance, Iee(ω,t) and of
(b) D01 distance, ICC(ω,t) are reported. Time is in ps, frequency in ps�1

and TTPs of 500 ps have been used.
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Fig. 8 Values of E1 and E2 functions (see text) for (a) Dee(t) and
(b) x-coordinate of the end-to-end vector.

Fig. 9 Percentage of local false nearest neigbours as a function of the
embedding dimension for the end-to-end trajectory Dee(t). NB = 40, 60,
80 and 100 neigbours are considered. From this view dL ~ 9 might be
chosen. Note dE ~ 11.

end-to-end distance was used to calculate the I(T ) function.
The first minimum of the average mutual information function
occurs at T = 17 (1.36 ps). Similar results, T = 18 (1.44 ps), were
obtained using the data from the x-coordinate.

Using a time lag of 1.36 ps, the functions E1 and E2 were
calculated for the two time series. As can be seen in Fig. 8a
and b, saturation is reached at dE ~ 11 after which it remains
approximately constant. This provides evidence that we are
dealing with a low dimensional system. The strength of this
conclusion is enhanced when similar results are obtained using
both time series data.

In the case of end-to-end distance the percentage of bad
predictions seen in Fig. 9 is independent of the number of
neighbours NB and of the local dimension at dL ~ 9, telling us
that this attractor may be adequately described by nine degrees
of freedom. Similar results are obtained using the x-coordinate
of the end-to-end vector. This means that models for simulating
the dynamic behavior of this peptide should have local ninth-
dimensional dynamics regardless of the dimensions of the
overall space within which the model is embedded.

These results shed light on the amazing chance of performing
simulations only along the few active dynamic degrees of free-
dom. By reducing drastically the dimension of the conform-
ational phase-space for dispersed molecules in solution, it
would be possible to perform long time force-field simulations,
characterizing slow molecular motions as helix–coil transitions
and protein folding in biopolymers or reptation in synthetic
polymers, which at the present cannot be investigated and is
unlikely to be for many years.34 In this framework Amadei et al.
have developed the Essential Dynamics method.35–37 This
approximation is linear and therefore can be improved. Never-
theless, the analysis outcome using chaos techniques confirms it.

Fig. 10 shows the nine computed local Lyapunov exponents
forwards and backwards in time. As can be seen, five Lyapunov
exponents are positive, one is close to zero and the others are

Fig. 10 Average local Lyapunov exponents λ for the end-to-end distance trajectory Dee(t) computed forward and backward in time using dL = 9. The
length is expressed in 2L � 1 where L is the number of time steps away from the time of perturbation. λ is measured in 12.5 ps�1. For large L, local
exponents become global (they converge to stable values).
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negative. The results are summarized in Table 1 which also gives
a negative total sum of the Lyapunov exponents, as expected
for a dissipative system.

Taking into account the fact that the calculation of
Lyapunov exponents is very susceptible to contamination, the
agreement between the different data sets is quite satisfactory.
Furthermore, the computation of the Lyapunov exponents
forwards and backwards in time gives approximately the same
results which tell us that the dynamical dimension has been
correctly calculated.

The existence of positive Lyapunov exponents demonstrates
further and strictly the chaos of conformational dynamics. The
chaotic behavior of the tetrapeptide in solution could play a
role in the expression of the restoring force in the entropic
mechanism of elastin elasticity. Our findings are in agreement
with the experimental evidence of Gaspard et al.38 for micro-
scopic chaos in fluid systems obtained by the observation of
Brownian motions of a colloidal particle suspended in water.
Moreover, they are in the framework of the chaotic hypothesis
of Krylov 39 (who referred to microscopic dynamic instabilities)
and Gallavotti and Cohen 40 which assume that the properties
of statistical mechanics can be predicted by treating the systems
as chaotic.

Conclusions
In a previous paper 5 the nonlinear dynamic behavior of Boc-
Gly-Leu-Gly-Gly-NMe in vacuo was described in terms of
solitons. Moreover, on the basis of amplitude instability theorem
of these vibrations for large oscillations,41 the transition from
quasiperiodicity to chaos was hypothesized in aqueous solu-
tion, where high intramolecular mobility is expected.

In this work the conformational flexibility and the transition
to chaos is demonstrated by modeling the tetrapeptide Ac-Gly-
Leu-Gly-Gly-NMe in aqueous solution. The simulated end-to-
end trajectory Ree(t) has been analyzed by determining its
fractal dimension (D = 1.64), the anomalous diffusion of its
motion (H = 0.38), the vibrational time-dependent picture,
attractor dimension (dL = 9) and Lyapunov’s exponents (five
positive values).

The peptide backbone undergoes large fluctuations around
folded and unfolded states as exemplified by the behavior of the
β-turn [Gly1]C��O � � � HN[Gly4]. The chance to develop these
larger amplitude motions is a necessary condition for the
observed chaotic behavior. The antipersistent fBm of Ree is the
fingerprint of correlations inside the randomness of the trajec-
tory, typical of chaos. The observed behavior departs from
the ideal Brownian motion because of the nonlinear inter-
actions in solution, as the excluded volume effects 42 which
reflect the interaction between residues and the water H-bond
network. It is similar to the behavior of collapsed chains in

Table 1 Lyapunov exponents of Fig. 10 for Dee(t) and the
x-coordinate of the end-to-end vector, computed forward and back-
ward in time, are summarized. Also the total sums DL are reported

Dee(t) x-Coordinate

λj Forward Backward Forward Backward

1
2
3
4
5
6
7
8
9
Sum
DL

0.5244
0.4376
0.3556
0.2519
0.1425
0.0082

�0.1734
�0.4646
�1.1203
�0.0380

8.96605

0.5617
0.4644
0.3870
0.2810
0.1684
0.0402

�0.1656
�0.4669
�1.1277

0.1426

0.5268
0.4356
0.3487
0.2564
0.1378

�0.0057
�0.2039
�0.4887
�1.1059
�0.0988

8.91064

0.5425
0.4534
0.3673
0.2734
0.1509
0.0141

�0.1762
�0.4426
�1.1359

0.0470

poor solvents 43 characterized by the Flory exponent ν = 1
3–.

The observed anomalous diffusion is coherent with the fBm
in fractal media: the diffusion lag of the peptide could be due
to the H-bonded water molecules that constitute a solution
percolation network.

The end-to-end trajectory Ree(t) has been analyzed using
delay coordinate embedding in an effort to understand the non-
linear dynamic behavior of the system. The analysis using
standard time-delay embedding techniques indicates low
dimensional chaotic dynamics. Even though the original system
has a large number of degrees of freedom, the results seem to
indicate that only a few degrees of freedom are active in the
final attractor and that the dynamics of such a system could be
described by a reduced number of differential equations.

The existence of a low dimensional chaotic attractor with a
few dynamic degrees of freedom active in determining the
evolution of the system, is typical of nonlinear dissipative
systems 44 to which molecules in solutions belong, and is con-
sistent with Langevin dynamics description. Similar results
have been obtained by a group currently researching the folding
of a small protein simulated as a Langevin system 45 (with
internal, viscous and external random forces) and by Zhou and
Wang on a polyalanine peptide.46

The vibrational picture of intramolecular vectors is space-
time self-similar testifying to a disordered behavior of the pep-
tide chain on large scale. Chaos is sufficient but not a necessary
condition for Brownian motion.47 In fact, the analysis of
simplified models showed that the erratic motion of dispersed
particles can be due largely to the randomness of the initial
conditions of the fluid molecules.48 However, chaos is defined
mathematically in terms of positive Lyapunov exponents. In
this way the authors showed that the conformational motion of
the elastin peptide in aqueous solution indeed has chaotic
features.

Even if the results obtained for a short tetrapeptide cannot
by any means be transferred to a complex molecule such as
elastin, however, they are compatible with the transition-to-
chaos mechanism of elasticity.5,6 The interpretation of the
observed chaotic dynamics in terms of elastin elasticity should
be regarded as a hypothesis needing to be proven in further
studies, using larger elastin substructures, control sequences
and updated dynamics. It is reasonable to suggest that the
physical behavior of elastin is a consequence of its nonlinear
effects developed at the protein–water interface where glycine-
rich regions, similar to the sequence of our peptide, are likely
to be located and where chaotic dynamics is to be expected.
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